Sains Malaysiana 53(2)(2024): 359-367
http://doi.org/10.17576/jsm-2024-5302-10
A New Oxoaporphine and Liriodenine's Anti-Neuroblastoma Potential from the Roots of Polyalthia bullata King
(Sebatian Oksoaporfina Baharu dan Potensi Anti-Neuroblastoma Liriodenin daripada Akar Polyalthia bullata King)
PHOEBE
SUSSANA PRIMUS1, CAROL HSIN-YI WU2, CHAI-LIN KAO3 & YEUN-MUN CHOO1,*
1Department of Chemistry, Faculty of
Science, Universiti Malaya, 50603 Kuala Lumpur,
Malaysia
2Division of
Cellular and Immune Therapy, Department of Medical Research, Kaohsiung Medical
University Hospital, Kaohsiung Medical University, Taiwan
3Department of Medicinal and Applied
Chemistry, Kaohsiung Medical University, Taiwan
Diserahkan: 4 Julai 2023/Diterima: 24 Januari2024
Abstract
Polyalthia bullata King’s root yielded a new compound named
5-methylliridine (1) in addition to six previously identified compounds.
These known compounds include liriodenine (2),
11-methoxyliriodenine (3), lysicamine (4), onychine (5), 5-hydroxy-6-methoxyonychine (6),
and 8-methoxyeupolauridine (7). The structures of compounds 1-7 were determined through spectroscopic analysis. Liriodenine (2) exhibited a remarkable ability to decrease the cell viability of
cancerous N2A cells to 22% within a 24 h timeframe, indicating its potential as
an anti-neuroblastoma agent. Molecular docking
results additionally suggested that oxoaporphines (1-4)
have the potential to act as inhibitors of protein kinases. These findings
highlight the therapeutic potential of P. bullata constituents in cancer treatment, particularly neuroblastoma,
and contribute to understanding its medicinal properties.
Keywords: Anti-neuroblastoma; oxoaporphine;
protein kinase; Polyalthia bullataKing; Tongkat Ali Hitam
Abstrak
Akar Polyalthia bullata King menghasilkan satu sebatian baharu yang dikenali sebagai 5-metilliridine
(1) bersama dengan enam sebatian yang sebelum ini telah dikenal pasti. Sebatian yang telah dikenali ini termasuk liriodenine (2), 11-metoksiliriodenine (3), lysicamine (4), onychine (5), 5-hidroksi-6-metoksionychine (6) dan 8-metoksieupolauridine (7). Struktur bagi sebatian 1-7 telah ditentukan melalui analisis spektroskopi. Liriodenine (2) menunjukkan keupayaan yang luar biasa dalam mengurangkan sel kanser N2A kepada 22% dalam jangka masa 24 jam, memberikan petanda tentang potensi sebagai agen anti-neuroblastoma. Hasil daripada dok molekul turut mencadangkan bahawa oksoaporfina (1-4) mempunyai potensi untuk bertindak sebagai perencat protein kinase. Penemuan ini menonjolkan potensi terapeutik bahan aktif P. bullata dalam rawatan kanser, khususnya neuroblastoma, serta menyumbang kepada pemahaman tentang sifat perubatannya.
Kata kunci: Anti-neuroblastoma; oksoaporfina; Polyalthia bullataKing; protein kinase; Tongkat Ali Hitam
RUJUKAN
Ahmad, F.,
Said, S.A., Chakravarthi, S., Norhidayah, A., Mohamed, B., Edros, R.Z.
& Vejayan, J. 2023. Comparison of
three aphrodisiac plants (Eurycoma longifolia, Polyalthia bullata and Stema tuberosa) synonymous with Tongkat Ali. Tropical J. Nat.
Prod. Res. 7(5): 3002-3008.
Alsailawi,
H.A., Mudhafar, M., Hanan, A.H., Ayat, S.S., Dhahi, S.J., Ruaa, K.M. &
Raheem Hussein, A. 2023. Phytochemical screening and antibacterial activities
of Antiaris toxicaria stem, Polyalthia rumphii leaves and Polyalthia
bullata stem extracts. AIP Conf. Proc. 2845(1): 020007.
Ang, H.
& Lee, K. 2006. Contamination of mercury in tongkat Ali hitam herbal
preparations. Food and Chemical
Toxicology 44(8):
1245-1250.
Bahmad,
H.F., Chamaa, F., Assi, S., Chalhoub, R.M., Abou-Antoun, T. & Abou-Kheir,
W. 2019. Cancer stem cells in neuroblastoma: Expanding the therapeutic
frontier. Front Mol. Neurosci. 12: 131.
Brenner,
A.K. & Gunnes, M.W. 2021. Therapeutic targeting of the Anaplastic Lymphoma
Kinase (ALK) in neuroblastoma-A comprehensive update. Pharmaceutics 13(9): 1427.
Chen,
Y.C., Chia, Y.C. & Huang, B.M. 2021. Phytochemicals from Polyalthia species: Potential and implication on anti-oxidant, anti-inflammatory,
anti-cancer, and chemoprevention activities. Molecules 26(17): 5369.
Chen,
Z.F., Liu, Y.C., Huang, K.B. & Liang, H. 2013. Alkaloid-metal based
anticancer agents. Current Topics in
Medicinal Chemistry 13:
2104-2115.
Chen,
Z.F., Liu, Y.C., Peng, Y., Hong, X., Wang, H.H., Zhang, M.M. & Liang, H.
2012. Synthesis, characterization, and in vitro antitumor properties of
gold(III) compounds with the Traditional Chinese Medicine (TCM) active
ingredient liriodenine. Journal of
Biological Inorganic Chemistry 17:
247-261.
Connolly,
J.D., Haque, M.E. & Kadir, A. 1996. Two 7, 7′-bisdehydroaporphine
alkaloids from Polyalthia bullata. Phytochemistry 43(1): 295-297.
Del
Grosso, F., De Mariano, M., Passoni, L., Luksch, R., Tonini, G.P. & Longo,
L. 2011. Inhibition of N-linked glycosylation impairs ALK phosphorylation and
disrupts pro-survival signaling in neuroblastoma cell lines. BMC Cancer 11: 525.
Din, L.B.,
Zakaria, Z., Abdullah, A. & Yamin, B.M. 2005. 8H-Benzo[g][1,3]benzodioxolo[6,5,4-de]quinolin-8-one
(oxocrebanine). Acta Crystallographica
Section E 61(5):
o1450-o1452.
Faizi, S.,
Khan, R.A., Azher, S., Khan, S.A., Tauseef, S. & Ahmad, A. 2003. New
antimicrobial alkaloids from the roots of Polyalthia longifolia var.
pendula. Planta Medica 69(4): 350-355.
Fun, H.K.,
Sivakumar, K., Yip, B.C., Othman, A.H. & Said, I.M. 1996.
-3,4-Dimethyl-2,5-bis(3,4,5-trimethoxyphenyl)tetrahydrofuran. Acta Crystallographica Section C 52(2): 414-416.
Gabarra-Niecko,
V., Schaller, M.D. & Dunty, J.M. 2003. FAK regulates biological processes
important for the pathogenesis of cancer. Cancer Metastasis Rev. 22(4):
359-374.
Greengard,
E.G. 2018. Molecularly targeted therapy for neuroblastoma. Children 5(10):
142.
Gross, S.,
Rahal, R., Stransky, N., Lengauer, C. & Hoeflich, K.P. 2015. Targeting
cancer with kinase inhibitors. J. Clin. Invest. 125(5): 1780-1789.
Guinaudeau,
H., Leboeuf, M. & Cavé, A. 1979. Aporphine alkaloids. II. Journal of Natural Products 42(4): 325-360.
Hennessy,
B.T., Smith, D.L., Ram, P.T., Lu, Y. & Mills, G.B. 2005. Exploiting the
PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov. 4(12): 988-1004.
Huang, X.,
Hao, N., Wang, Q., Li, R., Zhang, G., Chen, G., Liu, S. & Che, Z. 2022.
Non-food bioactive forest product liriodenine: Sources, chemistry, and
bioactivities. Industrial Crops and Products 187(Part B): 115447.
Jänne,
P.A., Gray, N. & Settleman, J. 2009. Factors underlying sensitivity of
cancers to small-molecule kinase inhibitors. Nat. Rev. Drug Discov. 8(9): 709-723.
Johnsen,
J.I., Segerström, L., Orrego, A., Elfman, L., Henriksson, M., Kågedal, B.,
Eksborg, S., Sveinbjörnsson, B. & Kogner, P. 2008. Inhibitors of mammalian
target of rapamycin downregulate MYCN protein expression and inhibit
neuroblastoma growth in vitro and in vivo. Oncogene 27(20): 2910-2922.
Kamarul
Zaman, M.A., Azzeme, A.M., Ramle, I.K., Normanshah, N., Ramli, S.N.,
Shaharuddin, N.A., Ahmad, S. & Abdullah, S.N.A. 2020a. Induction,
multiplication, and evaluation of antioxidant activity of Polyalthia bullata callus, a woody medicinal plant. Plants 9(12): 1772.
Kamarul
Zaman, M.A., Azzeme, A.M., Ramli, S.N., Shaharuddin, N.A., Ahmad, S. &
Abdullah, S.N.A. 2020b. Solvent extraction and its effect on phytochemical
yield and antioxidant capacity of woody medicinal plant, Polyalthia bullata. BioResources 15(4): 9555-9568.
Katkar,
K., Suthar, A. & Chauhan, V. 2010. The chemistry, pharmacologic, and
therapeutic applications of Polyalthia longifolia. Pharmacognosy Reviews 4(7):
62-68.
Kennedy, P.T.,
Zannoupa, D., Son, M.H., Dahal, L.N. & Woolley, J.F. 2023. Neuroblastoma:
An ongoing cold front for cancer immunotherapy. J. Immunother. Cancer 11(11): e007798.
London,
W.B., Castleberry, R.P., Matthay, K.K., Look, A.T., Seeger, R.C., Shimada, H.,
Thorner, P., Brodeur, G., Maris, J.M., Reynolds, C.P. & Cohn, S.L. 2005.
Evidence for an age cutoff greater than 365 days for neuroblastoma risk group
stratification in the Children's Oncology Group. J. Clin. Oncol. 23(27):
6459-6465.
Maris,
J.M., Hogarty, M.D., Bagatell, R. & Cohn, S.L. 2007. Neuroblastoma. Lancet 369(9579): 2106-2120.
Megison,
M.L., Gillory, L.A. & Beierle, E.A. 2013. Cell survival signaling in
neuroblastoma. Anticancer Agents Med. Chem. 13(4): 563-575.
Mueller,
D., Davis, R.A., Duffy, S., Avery, V.M., Camp, D. & Quinn, R.J. 2009.
Antimalarial activity of azafluorenone alkaloids from the Australian tree Mitrephora
diversifolia. J. Nat. Prod. 72(8): 1538-1540.
Nantapap,
S., Punyanitya, S., Nuntasaen, N., Pompimon, W. & Meepowpan, P. 2017.
Flavones from aerial parts of Polyalthia bullata and cytotoxicity
against cancer cell lines. Chemistry of
Natural Compounds 53(4):
762-763.
Paarakh,
P.M. & Khosa, R. 2009. Phytoconstituents from the genus Polyalthia -
A review. Journal of Pharmacy Research 2(4): 594-605.
Pan, E.,
Cao, S., Brodie, P.J., Callmander, M.W., Randrianaivo, R., Rakotonandrasana,
S., Rakotobe, E., Rasamison, V.E., TenDyke, K., Shen, Y., Suh, E.M. &
Kingston, D.G. 2011. Isolation and synthesis of antiproliferative eupolauridine
alkaloids of Ambavia gerrardii from the Madagascar Dry Forest. J. Nat. Prod. 74(5): 1169-1174.
Panthama,
N., Kanokmedhakul, S. & Kanokmedhakul, K. 2010. Polyacetylenes from the
roots of Polyalthia debilis. Journal
of Natural Products 73(8):
1366-1369.
Prachayasittikul,
S., Manam, P., Chinworrungsee, M., Isarankura-Na-Ayudhya, C., Ruchirawat, S.
& Prachayasittikul, V. 2009. Bioactive azafluorenone alkaloids from Polyalthia
debilis (pierre) finet & Gagnep. Molecules 14(11): 4414-4424.
Sulaiman,
M., Hamid, A.H.A. & Awang, K. 2003. Alkaloids and flavones from Desmos
dumosus, Roxb. Saff. (annonaceae). Malaysian
Journal of Science 22(1):
87-93.
Tekuri,
S.K., Pasupuleti, S.K., Konala, K.K. & Pabbaraju, N. 2019. Pharmacological
effects of Polyalthia cerasoides (Roxb.) Bedd.: A brief review. Journal of Complementary Medicine Research 10(1): 38-49.
Tsai, S.F.
& Lee, S.S. 2010. Characterization of acetylcholinesterase inhibitory
constituents from Annona glabra assisted by HPLC microfractionation. J. Nat. Prod. 73(10): 1632-1635.
Vishala,
T.C., Hieu, H.V., Killari, K.N., Ranajit, S.K., Samanth, S., Polimati, H.,
Ketha, A., Annam, S.S.P., Nallapaty, S., Koneru, S.T. & Akula, A. 2021. A
review on therapeutic benefits of active chemical moieties present in Polyalthia
longifolia. Indian Journal of Pharmaceutical Sciences 83(4): 634-647.
Wang, H.,
Chen, X. & He, L. 2023. A narrative review of radiomics and deep learning
advances in neuroblastoma: Updates and challenges. Pediatr. Radiol. 53(13): 2742-2755.
Wei, Y.B.,
Li, Y.X., Song, H. & Feng, X.J. 2014. Design, synthesis and anticancer
activity of oxoaporphine alkaloid derivatives. J. Enzyme Inhib. Med. Chem. 29(5):
722-727.
Wiart, C.,
Mogana, S., Khalifah, S., Mahan, M., Ismail, S., Buckle, M., Narayana, A.K.
& Sulaiman, M. 2004. Antimicrobial screening of plants used for traditional
medicine in the state of Perak, Peninsular Malaysia. Fitoterapia 75(1):
68-73.
Yao, L.J.,
Jalil, J., Attiq, A., Hui, C.C. & Zakaria, N.A. 2019. The medicinal uses,
toxicities and anti-inflammatory activity of Polyalthia species
(Annonaceae). J. Ethnopharmacol. 229: 303-325.
Yoo, H.D.,
Cremin, P.A., Zeng, L., Garo, E., Williams, C.T., Lee, C.M., Goering, M.G.,
O'Neil-Johnson, M., Eldridge, G.R. & Hu, J.F. 2005. Suaveolindole, a new
mass-limited antibacterial indolosesquiterpene from Greenwayodendron
suaveolens obtained via high-throughput natural products chemistry methods. Journal of Natural Products 68(1): 122-124.
*Pengarang untuk surat-menyurat;
email: ymchoo@um.edu.my
|